3.1.90 \(\int \csc ^2(e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\) [90]

3.1.90.1 Optimal result
3.1.90.2 Mathematica [C] (verified)
3.1.90.3 Rubi [A] (verified)
3.1.90.4 Maple [B] (verified)
3.1.90.5 Fricas [A] (verification not implemented)
3.1.90.6 Sympy [F(-1)]
3.1.90.7 Maxima [A] (verification not implemented)
3.1.90.8 Giac [F]
3.1.90.9 Mupad [F(-1)]

3.1.90.1 Optimal result

Integrand size = 25, antiderivative size = 105 \[ \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {3 \sqrt {b} (a+b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {3 b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f}-\frac {\cot (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{f} \]

output
3/2*(a+b)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))*b^(1/2)/f 
+3/2*b*(a+b+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/f-cot(f*x+e)*(a+b+b*tan(f*x+e 
)^2)^(3/2)/f
 
3.1.90.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.20 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.61 \[ \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=-\frac {(a+b) \cot (e+f x) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},2,\frac {1}{2},\frac {b \sin ^2(e+f x)}{a+b-a \sin ^2(e+f x)}\right ) \sqrt {a+b \sec ^2(e+f x)}}{f} \]

input
Integrate[Csc[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
-(((a + b)*Cot[e + f*x]*Hypergeometric2F1[-1/2, 2, 1/2, (b*Sin[e + f*x]^2) 
/(a + b - a*Sin[e + f*x]^2)]*Sqrt[a + b*Sec[e + f*x]^2])/f)
 
3.1.90.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.98, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3042, 4620, 247, 211, 224, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sec (e+f x)^2\right )^{3/2}}{\sin (e+f x)^2}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \cot ^2(e+f x) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 247

\(\displaystyle \frac {3 b \int \sqrt {b \tan ^2(e+f x)+a+b}d\tan (e+f x)-\cot (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f}\)

\(\Big \downarrow \) 211

\(\displaystyle \frac {3 b \left (\frac {1}{2} (a+b) \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\frac {1}{2} \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\cot (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {3 b \left (\frac {1}{2} (a+b) \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+\frac {1}{2} \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\cot (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {3 b \left (\frac {(a+b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 \sqrt {b}}+\frac {1}{2} \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\cot (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f}\)

input
Int[Csc[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(-(Cot[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2)) + 3*b*(((a + b)*ArcTanh[ 
(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*Sqrt[b]) + (Tan 
[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/2))/f
 

3.1.90.3.1 Defintions of rubi rules used

rule 211
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x*((a + b*x^2)^p/(2*p + 1 
)), x] + Simp[2*a*(p/(2*p + 1))   Int[(a + b*x^2)^(p - 1), x], x] /; FreeQ[ 
{a, b}, x] && GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[6*p])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 247
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 1))), x] - Simp[2*b*(p/(c^2*(m + 1)))   Int[ 
(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && GtQ[p, 
0] && LtQ[m, -1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, 
m, p, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
3.1.90.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(740\) vs. \(2(91)=182\).

Time = 10.17 (sec) , antiderivative size = 741, normalized size of antiderivative = 7.06

method result size
default \(\frac {\left (3 b^{\frac {5}{2}} \ln \left (\frac {-4 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {b}\, \cos \left (f x +e \right )-4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )-1}\right ) \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )+3 b^{\frac {5}{2}} \ln \left (-\frac {4 \left (-\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {b}\, \cos \left (f x +e \right )+\sin \left (f x +e \right ) a -\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+a +b \right )}{\sin \left (f x +e \right )+1}\right ) \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )+3 b^{\frac {3}{2}} \ln \left (\frac {-4 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {b}\, \cos \left (f x +e \right )-4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )-1}\right ) a \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )+3 b^{\frac {3}{2}} \ln \left (-\frac {4 \left (-\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {b}\, \cos \left (f x +e \right )+\sin \left (f x +e \right ) a -\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+a +b \right )}{\sin \left (f x +e \right )+1}\right ) a \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )-4 \cos \left (f x +e \right )^{3} \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b -6 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2} \cos \left (f x +e \right )^{3}-4 \cos \left (f x +e \right )^{2} \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b -6 \cos \left (f x +e \right )^{2} \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2}+2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2} \cos \left (f x +e \right )+2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2}\right ) \left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}} \cot \left (f x +e \right )}{4 f b \left (b +a \cos \left (f x +e \right )^{2}\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \left (1+\cos \left (f x +e \right )\right )}\) \(741\)

input
int(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/4/f/b*(3*b^(5/2)*ln(4*(-((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^(1 
/2)*cos(f*x+e)+sin(f*x+e)*a-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^ 
(1/2)-a-b)/(sin(f*x+e)-1))*cos(f*x+e)^2*sin(f*x+e)+3*b^(5/2)*ln(-4*(-((b+a 
*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^(1/2)*cos(f*x+e)+sin(f*x+e)*a-b^( 
1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+a+b)/(sin(f*x+e)+1))*cos( 
f*x+e)^2*sin(f*x+e)+3*b^(3/2)*ln(4*(-((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2) 
^(1/2)*b^(1/2)*cos(f*x+e)+sin(f*x+e)*a-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos( 
f*x+e))^2)^(1/2)-a-b)/(sin(f*x+e)-1))*a*cos(f*x+e)^2*sin(f*x+e)+3*b^(3/2)* 
ln(-4*(-((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^(1/2)*cos(f*x+e)+sin 
(f*x+e)*a-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+a+b)/(sin(f* 
x+e)+1))*a*cos(f*x+e)^2*sin(f*x+e)-4*cos(f*x+e)^3*((b+a*cos(f*x+e)^2)/(1+c 
os(f*x+e))^2)^(1/2)*a*b-6*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2* 
cos(f*x+e)^3-4*cos(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a* 
b-6*cos(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2+2*((b+a*c 
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2*cos(f*x+e)+2*((b+a*cos(f*x+e)^2)/ 
(1+cos(f*x+e))^2)^(1/2)*b^2)*(a+b*sec(f*x+e)^2)^(3/2)/(b+a*cos(f*x+e)^2)/( 
(b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)/(1+cos(f*x+e))*cot(f*x+e)
 
3.1.90.5 Fricas [A] (verification not implemented)

Time = 0.47 (sec) , antiderivative size = 370, normalized size of antiderivative = 3.52 \[ \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\left [\frac {3 \, {\left (a + b\right )} \sqrt {b} \cos \left (f x + e\right ) \log \left (\frac {{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) \sin \left (f x + e\right ) - 4 \, {\left ({\left (2 \, a + 3 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{8 \, f \cos \left (f x + e\right ) \sin \left (f x + e\right )}, \frac {3 \, {\left (a + b\right )} \sqrt {-b} \arctan \left (-\frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, {\left ({\left (2 \, a + 3 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, f \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ] \]

input
integrate(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[1/8*(3*(a + b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e) 
^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f* 
x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 
 8*b^2)/cos(f*x + e)^4)*sin(f*x + e) - 4*((2*a + 3*b)*cos(f*x + e)^2 - b)* 
sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(f*cos(f*x + e)*sin(f*x + e)) 
, 1/4*(3*(a + b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f* 
x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x 
 + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e)*sin(f*x + e) - 2*((2*a + 3*b)*c 
os(f*x + e)^2 - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(f*cos(f*x 
 + e)*sin(f*x + e))]
 
3.1.90.6 Sympy [F(-1)]

Timed out. \[ \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

input
integrate(csc(f*x+e)**2*(a+b*sec(f*x+e)**2)**(3/2),x)
 
output
Timed out
 
3.1.90.7 Maxima [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.93 \[ \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {3 \, a \sqrt {b} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) + 3 \, b^{\frac {3}{2}} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) + 3 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b} b \tan \left (f x + e\right ) - \frac {2 \, {\left (b \tan \left (f x + e\right )^{2} + a + b\right )}^{\frac {3}{2}}}{\tan \left (f x + e\right )}}{2 \, f} \]

input
integrate(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
1/2*(3*a*sqrt(b)*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b)) + 3*b^(3/2)*arcsi 
nh(b*tan(f*x + e)/sqrt((a + b)*b)) + 3*sqrt(b*tan(f*x + e)^2 + a + b)*b*ta 
n(f*x + e) - 2*(b*tan(f*x + e)^2 + a + b)^(3/2)/tan(f*x + e))/f
 
3.1.90.8 Giac [F]

\[ \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{2} \,d x } \]

input
integrate(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
integrate((b*sec(f*x + e)^2 + a)^(3/2)*csc(f*x + e)^2, x)
 
3.1.90.9 Mupad [F(-1)]

Timed out. \[ \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int \frac {{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}}{{\sin \left (e+f\,x\right )}^2} \,d x \]

input
int((a + b/cos(e + f*x)^2)^(3/2)/sin(e + f*x)^2,x)
 
output
int((a + b/cos(e + f*x)^2)^(3/2)/sin(e + f*x)^2, x)